Brief information about the project

Name of the project	AP09058322 «Synthesis and investigation of a composite
1 5	based on a metal-organic framework (MOF) for its
	application as an anode material in sodium-ion batteries»
Relevance	Certainly, the topic of sodium sources is relevant for
	Kazakhstan, and despite the absence of their production in the
	republic, its development is necessary. This creates favorable
	conditions for launching domestic production of sodium-ion
	batteries (SIBs). Additionally, it is important to note that with further development, the market in Kazakhstan may witness
	the emergence of innovative materials based on MOF, the
	prospects of which extend beyond just battery production.
Purpose	Develop a synthesis method for a MOF composite as an anode
Tupose	material with high electrical conductivity, capacity, and
	durability for its subsequent application in Na-ion batteries.
Objectives	1. Synthesis of a stable metal-organic framework (MOF)
5	compound via hydrothermal method. Based on literature
	data, MOF-Zn(EDTA) was chosen due to its high specific
	capacity (243.2 mAh/g), presence of interlayer space
	allowing for easy intercalation-deintercalation of sodium
	ions, as well as the affordability and availability of starting
	reagents.
	2 Synthesis of MOE composite and fabrication of anode
	2. Synthesis of MOF composite and fabrication of anode material based on it. Silver nanopowder was selected as a
	modifying agent primarily for validating the mechanism of
	action of the highly conductive additive, while copper
	nanopowder was chosen as an affordable and suitable
	material meeting the required properties.
	3. Investigation of structural and electrochemical
	characteristics of the anode material based on the MOF
	composite. This stage is closely related to the previous one,
	as it involves analyzing the impact of the structural
	organization of the multi-component material on its
	electrochemical properties. It aims to identify the dependence of electrochemical characteristics (specific capacities,
	charge-discharge rates, material stability during prolonged
	cycling) on the composition, structure, and conditions of
	obtaining the anode mass.
	4. Study of the kinetics of intercalation processes in the anode
	material based on the MOF composite. The final stage of the
	work involves establishing theoretical principles of charge
	transfer in the hierarchically organized MOF-based anode
	material.
Expected and achieved results	- A metal-organic compound Zn2(EDTA)(H2O) was
	synthesized via the hydrothermal method with process
	optimization achieved through control of temperature, pH,
	and synthesis duration.

Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Synthesis of a new structure with a composition of Zn2EDTA was realized during the investigation of the Zn2(EDTA)(H2O) compound. It was demonstrated that precise pH control plays a crucial role in phase formation of this compound. The potential of Zn2(EDTA)(H2O) and Zn2EDTA MOF compounds as anode materials for sodium-ion batteries based on aqueous electrolytes was explored. Oxidation-reduction processes related to zinc deposition and hydrogen evolution were identified through cyclic voltammetry, limiting their use as anodes for water-based batteries. Ivan Trusov, ResearcherID: H4522-2018, ORCID: 0000-0002-6534-1389, Scopus Author ID:57200513467 Starodubtseva Alena, ORCHID: 0000-0003-4344-2039; Scopus Author ID: 57988905100 Lepikhin Maxim, Scopus Author ID: 56436632000. Kan Tatyana, Scopus Author ID: 57359426400, ResearcherID-LF-3477-2024, ORCHID-0000-0002-1222-2060 Zhigalenok Yaroslav, Scopus Author ID-57359426400, ResearcherID-LF-3477-2024, ORCHID-0000-0002-1222-2060 Vladislav Dubrovsky
List of publications with links to them Patents	 7) Malik Seilbek 1) Alena A. Starodubtseva, Yaroslav S. Zhigalenok, Kairgali M. Maldybayev, Alina K. Galeyeva, Ivan A. Trussov and Andrey Kurbatov On electrochemistry of metal-organic framework Zn₂(EDTA)(H₂O) // RSC Advances. 2023. – V. 13. – P. 4880 – 4889. (WOS - Q2, SCOPUS - 78 процентиль). <u>https://doi.org/10.1039/d3ra00040k</u>. 2) Alena A. Starodubtseva, Tatyana V. Kan, Sergey N. Marshenya, Konstantin A. Lyssenko, Stanislav S. Fedotov, Ivan A. Trussov Synthesis and structure of anhydrous Zn₂EDTA metal-organic framework // Polyhedron. 2024. – V.248. (WOS – Q1, SCOPUS - 69 процентиль). <u>https://doi.org/10.1016/j.poly.2023.116750</u>.
r alcills	

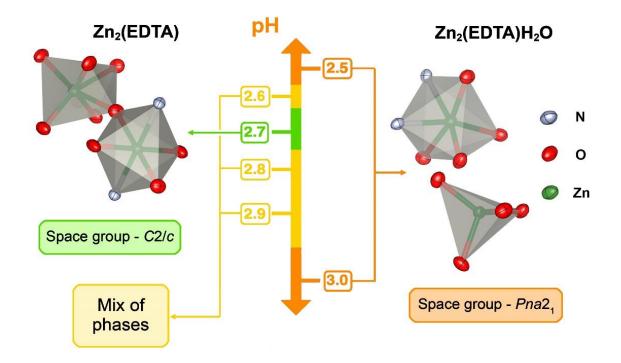


Figure 1 – Effect of pH on the formation of Zn2(EDTA) structures

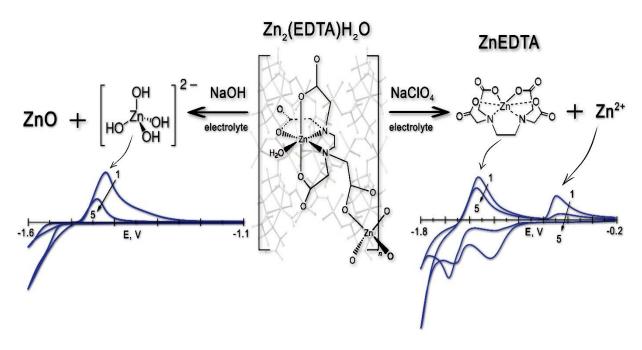


Figure 2 - Electrochemical behavior of Zn₂(EDTA) in aqueous electrolytes.